Injection Mold Design Considerations

Injection molding machines consist of a material hopper, an injection ram or screw-type plunger, and a heating unit. They are also known as presses, they hold the molds in which the components are shaped. Presses are rated by tonnage, which expresses the amount of clamping force that the machine can exert. This force keeps the mold closed during the injection process. Tonnage can vary from less than 5 tons to 6000 tons, with the higher figures used in comparatively few manufacturing operations. The total clamp force needed is determined by the projected area of the part being molded. This projected area is multiplied by a clamp force of from 2 to 8 tons for each square inch of the projected areas. As a rule of thumb, 4 or 5 tons/in2 can be used for most products. If the plastic material is very stiff, it will require more injection pressure to fill the mold, thus more clamp tonnage to hold the mold closed. The required force can also be determined by the material used and the size of the part, larger parts require higher clamping force.

Mold or die are the common terms used to describe the tooling used to produce plastic parts in molding.

Traditionally, molds have been expensive to manufacture. They were usually only used in mass production where thousands of parts were being produced. Molds are typically constructed from hardened steel, pre-hardened steel, aluminum, and/or beryllium-copper alloy. The choice of material to build a mold from is primarily one of economics, steel molds generally cost more to construct, but their longer lifespan will offset the higher initial cost over a higher number of parts made before wearing out. Pre-hardened steel molds are less wear resistant and are used for lower volume requirements or larger components. The steel hardness is typically 38-45 on the Rockwell-C scale. Hardened steel molds are heat treated after machining. These are by far the superior in terms of wear resistance and lifespan. Typical hardness ranges between 50 and 60 Rockwell-C (HRC). Aluminum molds can cost substantially less, and when designed and machined with modern computerized equipment, can be economical for molding tens or even hundreds of thousands of parts. Beryllium copper is used in areas of the mold which require fast heat removal or areas that see the

most shear heat generated. The molds can be manufactured by either CNC machining or by using Electrical Discharge Machining processes

injectionmolding-design

 

 

packagedchiller
SA Series
Packaged Chillers
Non-expandable
(integrated pump tank)
1.5Ton – 20Ton
Single / Dual Circuits
Single / Dual Pumps
smallmodularpic
SAE Series
Modular Chillers
Expandable
(pump & tank on
separate skid)
1.5Ton – 200Ton
Single / Dual Circuits
smallsplitpic
SAR Series
Split Chillers
Expandable
(Outdoor Condensing Unit)
(pump, tank, evaporator on
indoor skid)
1.5Ton – 200Ton
Single / Dual Circuits